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Abstract
In this paper, we propose integrable semi-discrete and full-discrete analogues
of the short pulse (SP) equation. The key construction is the bilinear form
and determinant structure of solutions of the SP equation. We also give
the determinant formulas of N-soliton solutions of the semi-discrete and full-
discrete analogues of the SP equations, from which the multi-loop and multi-
breather solutions can be generated. In the continuous limit, the full-discrete SP
equation converges to the semi-discrete SP equation, and then to the continuous
SP equation. Based on the semi-discrete SP equation, an integrable numerical
scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the
numerical computation of the short pulse equation.

PACS numbers: 02.30.Ik, 05.45.Yv, 42.65.Tg, 42.81.Dp

1. Introduction

Most recently, the short pulse (SP) equation

uxt = u + 1
6 (u3)xx (1.1)

was derived as a model equation for the propagation of ultra-short optical pulses in nonlinear
media [1, 2]. Here, u = u(x, t) represents the magnitude of the electric field, and the
subscripts t and x denote partial differentiation. Apart from the context of nonlinear optics,
the SP equation has also been derived as an integrable differential equation associated with
pseudospherical surfaces [3]. The SP equation has been shown to be completely integrable
[3–7]. The loop soliton solutions as well as smooth soliton solutions of the SP equation were
found in [8–10]. The connection between the SP equation and the sine-Gordon equation
through the hodograph transformation was clarified in [11], and then the N-soliton solutions,
including multi-loop and multi-breather soliton solutions, were given by using the Hirota
bilinear method.

Integrable discretizations of soliton equations have received considerable attention
recently [12–15]. In our recent work, we proposed an integrable semi-discrete analogue
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of the Camassa–Holm (CH) equation and applied it as a numerical scheme, i.e. a self-adaptive
moving mesh scheme [16, 17]. The key discretization is an introduction of an non-uniform
mesh, which plays a role of the hodograph transformation as in the continuous case.

In this paper, we attempt to construct integrable semi-discrete and full-discretizations of
the SP equation by the same approach used in the CH equation. We also attempt to use the
semi-discrete analogue of the SP equation as a self-adaptive moving mesh scheme to perform
numerical simulations.

The rest of the present communication is organized as follows. In section 2, we review
the bilinear equations and determinant solutions of the SP equation. In section 3, we propose
an integrable semi-discrete analogue of the SP equation, whose N-soliton solutions are also
constructed in terms of determinant form. By using the semi-discrete analogue of the SP
equation as a self-adaptive moving mesh scheme, the numerical results for one- and two-loop
soliton solutions are also presented. In section 4, the full-discrete analogue of the SP equation
is proposed. The communication is concluded by section 5.

2. Bilinear equations and determinant solutions of the short pulse equation

In this section, the results in [11], regarding the bilinear equations and the solutions of the SP
equation, will be briefly reviewed.

First, by introducing the new dependent variable

r2 = 1 + u2
x, (2.1)

the SP equation is rewritten as

rt = (
1
2u2r

)
x
. (2.2)

Introducing the hodograph transformation

dy = r dx + 1
2u2r dt, ds = dt, (2.3)

i.e.
∂

∂t
= 1

2
u2r

∂

∂y
+

∂

∂s
,

∂

∂x
= r

∂

∂y
,

we obtain

rs = r2uuy, (2.4)

where

r2 = 1 + r2u2
y.

Equation (2.4) can also be cast into a form of(
1

r

)
s

= −
(

1

2
u2

)
y

. (2.5)

Introducing new variables

r = 1

cos φ
, u = φs, (2.6)

equation (2.5) leads to the sine-Gordon equation

φys = sin φ. (2.7)

Moreover, as is shown in [18, 22], upon the dependent variable transformation

φ(y, s) = 2i ln
F ∗(y, s)

F (y, s)
,

2
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the sine-Gordon equation (2.7) leads to the following bilinear equations:

FFys − FyFs = 1
4 (F 2 − F ∗2

), (2.8)

F ∗F ∗
ys − F ∗

y F ∗
s = 1

4 (F ∗2 − F 2), (2.9)

where F ∗ is the complex conjugate of F. Henceforth, the solutions of the SP equation are
obtained by F and F ∗ through the dependent variable transformation

u(y, s) = ∂

∂s
φ(y, s) = ∂

∂s

(
2i ln

F ∗(y, s)

F (y, s)

)
. (2.10)

In what follows, we will show that the bilinear equations (2.8) and (2.9) are actually
obtained as the 2-reduction of the two-dimensional Toda lattice (2DTL) equations [19–22]:

1
2DY DSτn · τn = τn

2 − τn+1τn−1, (2.11)

i.e.,

τn

∂2τn

∂Y∂S
− ∂τn

∂Y

∂τn

∂S
= τn

2 − τn+1τn−1, (2.12)

where Dx is the Hirota D-operator which is defined as

Dn
xf · g =

(
∂

∂x
− ∂

∂y

)n

f (x)g(y)|y=x.

Applying the 2-reduction τn−1 = α−1τn+1 (α is a constant), we obtain

τn

∂2τn

∂Y∂S
− ∂τn

∂Y

∂τn

∂S
= τn

2 − τ 2
n+1, (2.13)

where the gauge transformation τn → α
n
2 τn is used. Letting f = τ0 and f̄ = τ1, we have

ffYS − fY fS = f 2 − f̄
2
, (2.14)

f̄ f̄ YS − f̄ Y f̄ S = f̄
2 − f 2. (2.15)

Under the independent variable transformation y = 2Y , s = 2S, we obtain

ffys − fyfs = 1
4 (f 2 − f̄

2
), (2.16)

f̄ f̄ ys − f̄ y f̄ s = 1
4 (f̄

2 − f 2), (2.17)

which are bilinear equations of the SP equation.
Next, we give the Casorati determinant (N-soliton) solution of the SP equation. It is

known that the Casorati determinant solution of the 2DTL equation is of the form [21, 22]

τn(Y, S) = ∣∣ψ(n+j−1)

i (Y, S)
∣∣
1�i,j�N

, (2.18)

where ψ
(n)
i (Y, S) satisfies linear dispersion relations

∂ψ
(n)
i

∂Y
= ψ

(n+1)
i ,

∂ψ
(n)
i

∂S
= ψ

(n−1)
i . (2.19)

For example, a particular choice of ψ
(n)
i (Y, S)

ψ
(n)
i (Y, S) = ci,1p

n
i epiY+ 1

pi
S+η0i + ci,2q

n
i eqiY+ 1

qi
S+η′

0i , (2.20)

3
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with ci,1 and ci,2 being constants, satisfies the linear dispersion relations and gives the N-soliton
solutions.

Applying the 2-reduction qi = −pi and the change of variables y = 2Y and s = 2S, we
obtain the determinant solution of bilinear equations (2.16) and (2.17):

f (y, s) = τ0(y, s), f̄ (y, s) = τ1(y, s),

τn(y, s) = ∣∣ψ(n+j−1)

i (y, s)
∣∣
1�i,j�N

,
(2.21)

where

ψ
(n)
i (y, s) = ci,1p

n
i e

1
2 piy+ 1

2pi
s+η0i + ci,2(−pi)

n e− 1
2 piy− 1

2pi
s+η′

0i . (2.22)

Since u is real and the dependent variable transformation of u includes the imaginary
number, we must consider the reality condition of u. Let us introduce α and β such that
F ∗ = αf̄ and F = βf , where F and F ∗ are complex conjugate of each other. Note that F and
F ∗ also satisfy the bilinear equations (2.16) and (2.17) because of

u = ∂

∂s

(
2i ln

F ∗

F

)
= ∂

∂s

(
2i ln

αf̄

βf

)
= ∂

∂s

(
2i ln

f̄

f
+ 2i ln

α

β

)
= ∂

∂s

(
2i ln

f̄

f

)
. (2.23)

Thus, a set of F and F ∗ gives solutions of the SP equation as well as a set of f and f̄ . By
choosing phase constants appropriately, the functions f and f̄ can be made to be complex
conjugate of each other to keep the reality and regularity of u. For example, the following
choice:

ψ
(n)
i = pn

i e
1
2 piy+ 1

2pi
s+η0i−iπ/4 + (−pi)

n e− 1
2 piy− 1

2pi
s+η′

0i+iπ/4 (2.24)

guarantees the reality and regularity of the solution.
Summarizing the above results, the determinant (N-soliton) solution of the SP equation is

given by

u(y, s) = ∂

∂s

(
2i ln

f̄ (y, s)

f (y, s)

)
, (2.25)

x = y − 2(ln f̄ f )s, t = s,

f (y, s) = τ0(y, s), f̄ (y, s) = τ1(y, s),

τn(y, s) = ∣∣ψ(n+j−1)

i (y, s)
∣∣
1�i,j�N

,

where

ψ
(n)
i = pn

i e
1
2 piy+ 1

2pi
s+η0i−iπ/4 + (−pi)

n e− 1
2 piy− 1

2pi
s+η′

0i+iπ/4
.

3. An integrable semi-discretization of the short pulse equation and numerical
computations

Based on the above fact, we construct the integrable spatial-discretization of the SP equation.
Consider the following Casorati determinant:

τn(k, S) = ∣∣ψ(n+j−1)

i (k, S)
∣∣
1�i,j�N

, (3.1)

where ψ
(n)
i satisfies the dispersion relations


kψ
(n)
i = ψ

(n+1)
i , (3.2)

4
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∂Sψ
(n)
i = ψ

(n−1)
i . (3.3)

Here 
k is the backward difference operator with the spacing constant a:


kf (k) = f (k) − f (k − 1)

a
.

Particularly, one can choose

ψ
(n)
i (k, S) = ci,1p

n
i (1 − api)

−k e
1
pi

S+ξi0 + ci,2q
n
i (1 − aqi)

−k e
1
qi

S+ηi0 , (3.4)

which automatically satisfies the dispersion relations (3.2) and (3.3). The above Casorati
determinant satisfies the bilinear form of the semi-discrete 2DTL equation (the Bäcklund
transformation of the bilinear equation of 2DTL equation) [22, 23](

1

a
DS − 1

)
τn(k + 1) · τn(k) + τn+1(k + 1)τn−1(k) = 0. (3.5)

Applying the 2-reduction

qi = −pi,

and letting

fk = τ0(k), f̄ k = τ1(k) =
(

N∏
i=1

p2
i

)
τ−1(k),

we obtain

1

a
DSfk+1 · fk − fk+1fk + f̄ k+1f̄ k = 0, (3.6)

1

a
DSf̄ k+1 · f̄ k − f̄ k+1f̄ k + fk+1fk = 0, (3.7)

where the gauge transformation τn → ( ∏N
i=1 pi

)n
τn is used. Note that fk and f̄ k can be made

complex conjugate of each other by choosing the phase constants properly. Under the change
of independent variable s = 2S, equation (3.5) implies the following two bilinear equations:

2

a
Dsfk+1 · fk − fk+1fk + f̄ k+1f̄ k = 0, (3.8)

2

a
Dsf̄ k+1 · f̄ k − f̄ k+1f̄ k + fk+1fk = 0, (3.9)

which can be readily shown to be equivalent to

−
(

2

a

(
ln

fk+1

fk

)
s

− 1

)
= f̄ k+1f̄ k

fk+1fk

, (3.10)

−
(

2

a

(
ln

f̄ k+1

f̄ k

)
s

− 1

)
= fk+1fk

f̄ k+1f̄ k

, (3.11)

where the subscript ‘s’ denotes the derivative with respect to the continuous variable ‘s’.
Subtracting the above two equations, one obtains

2

a

((
ln

f̄ k+1

f̄ k

)
s

−
(

ln
fk+1

fk

)
s

)
= f̄ k+1f̄ k

fk+1fk

− fk+1fk

f̄ k+1f̄ k

. (3.12)

5
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Introducing the dependent variable transformation φk(s) = 2i ln
(

f̄ k(s)

fk(s)

)
, one arrives at

1

2a

(
dφk+1

ds
− dφk

ds

)
= sin

(
φk+1 + φk

2

)
, (3.13)

which is nothing but an integrable semi-discretization of the sine-Gordon equation. Note that
this is also known as the Bäcklund transformation of the sine-Gordon equation [24, 25].

It is obvious that, from the semi-discrete sine-Gordon equation (3.13), the equation(
cos

(
φk+1 + φk

2

))
s

= − 1

4a

((
dφk+1

ds

)2

−
(

dφk

ds

)2)
(3.14)

is implied. By introducing the variable transformations

uk = dφk

ds
= d

ds

(
2i ln

f̄ k(s)

fk(s)

)
, δk = a cos

(
φk+1 + φk

2

)
, (3.15)

it then follows that

dδk

ds
= −u2

k+1 − u2
k

4
, (3.16)

which is the first equation of a semi-discrete analogue of the SP equation.
From the facts

cos2

(
φk+1 + φk

2

)
+ sin2

(
φk+1 + φk

2

)
= 1, (3.17)

sin

(
φk+1 + φk

2

)
= uk+1 − uk

2a
, (3.18)

and

1

rk

= δk

a
= cos

(
φk+1 + φk

2

)
, (3.19)

it follows that

δ2
k

a2
+

(uk+1 − uk)
2

4a2
= 1,

i.e.

δ2
k = a2 − (uk+1 − uk)

2

4
, (3.20)

which becomes another equation of a semi-discrete analogue of the SP equation.
Summarizing the above results, we obtained an integrable semi-discrete analogue of the

SP equation

(uk+1 − uk)
2 = 4

(
a2 − δ2

k

)
, (3.21)

dδk

ds
= −u2

k+1 − u2
k

4
, (3.22)

where the x-coordinate of the k-th lattice point is given by Xk = X0 +
∑k−1

l=0 δl =
ka − d

ds
(ln f̄ kf̄ k). From the construction, the semi-discrete analogue of the SP equation

6
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has the following Casorati determinant solution:

uk(s) = d

ds

(
2i ln

f̄ k

fk

)
, δk = a

2

(
f̄ k+1f̄ k

fk+1fk

+
fk+1fk

f̄ k+1f̄ k

)
,

Xk = ka − d

ds
(ln f̄ kf̄ k),

fk(s) = τ0(k, s), f̄ k(s) = τ1(k, s),

τn(k, s) = ∣∣ψ(n+j−1)

i (k, s)
∣∣
1�i,j�N

,

(3.23)

with

ψ
(n)
i (k, s) = pn

i (1 − api)
−k e

1
2pi

s+ξi0−iπ/4 + (−pi)
n(1 + api)

−k e− 1
2pi

s+ηi0+iπ/4
,

where the phase constants ±iπ/4 play the role of keeping the reality and regularity of the
solution.

Note that a2 must be always greater than or equal to δ2
k because (uk+1 − uk)

2 � 0. This
can be easily verified by

|δk| =
∣∣∣∣a cos

(
φk+1 + φk

2

)∣∣∣∣ � |a|. (3.24)

The mesh size of self-adaptive mesh |δk| is always chosen as less than |a|.
We can rewrite the semi-discrete SP equation in an alternative form which converges to

the SP equation in the continuous limit δk → 0. Multiplying equation (3.22) by 2δk , we have

dδ2
k

ds
= −δk

u2
k+1 − u2

k

2
. (3.25)

A substitution of δ2
k from equation (3.21) into equation (3.25) leads to

d(uk+1 − uk)

ds
= δk(uk+1 + uk). (3.26)

Since
d

ds

(
uk+1 − uk

δk

)
= 1

δk

d(uk+1 − uk)

ds
− uk+1 − uk

δ2
k

dδk

ds
, (3.27)

it follows that

d

ds

(
uk+1 − uk

δk

)
= uk+1 + uk +

uk+1 + uk

4

(
uk+1 − uk

δk

)2

, (3.28)

by using equations (3.26) and (3.22). Equation (3.28) gives another form of the semi-discrete
SP equation. In the continuous limit a → 0 (δk → 0), we have

uk+1 − uk

δk

→ du

dX
,

uk+1 + uk

2
→ u,

∂X

∂s
= ∂X0

∂s
+

k−1∑
j=0

dδj

ds
= −1

4

k−1∑
j=0

(
u2

j+1 − u2
j

) → −1

4
u2,

∂s = ∂t +
∂X

∂s
∂X → ∂t − 1

4
u2∂X,

Consequently, equation (3.28) converges to(
∂t − 1

4u2∂X

)
ux = 2u + 1

2uu2
X.

By the scaling transformation x = 2X, one arrives at

uxt = u + uu2
x + 1

2u2uxx,

7
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Figure 1. Numerical solution for one-loop soliton solution with p1 = 0.5 at (a) t = 0.0;
(b) t = 10.0, dot line: numerical solution; solid line: exact solution.

which turns out to be the SP equation

uxt = u + 1
6 (u3)xx.

In a similar way employed in [16, 17], the semi-discrete analogue of the SP equation can
be used as a novel numerical scheme, i.e. the so-called self-adaptive moving mesh method,
to perform numerical computations for the SP equation. However, the first equation (3.21)
has ambiguity for determining the sign even if the non-uniform mesh δk is solved from
the second equation (3.22). To avoid this difficulty, we introduce an intermediate variable
φ̄k = (φk+1 + φk)/2, and employ the following scheme:⎧⎨

⎩
uk+1 − uk = 2a sin(φ̄k),

dφ̄k

ds
= uk+1 + uk

2
,

(3.29)

which can be derived from equations (3.18) and (3.15). Equations (3.29) are equivalent to the
integrable semi-discrete analogue of the SP equation, and the relation between the non-uniform
mesh δk and φ̄k is δk = a cos(φ̄k). Figures 1 and 2 are numerical results for one-loop and
two-loop soliton solutions, respectively. The time stepsize is 
t = 0.01, the number of grid
points is N = 200, and the value of the spacing parameter is a = 0.5. The detailed numerical
results by using the integrable semi-discrete SP equation will be reported somewhere else.

4. Full-discretizations of the short pulse equation

To construct a full-discrete analogue of the SP equation, we introduce one more discrete
variable l which corresponds to the discrete time variable.

It is known that the τ -function

τn(k, l) = ∣∣ψ(n+j−1)

i (k, l)
∣∣
1�i,j�N

, (4.1)

with

ψ
(n)
i (k, l) = ci,1p

n
i (1 − api)

−k

(
1 − b

1

pi

)−l

e
1

2pi
s+ξi0

+ ci,2q
n
i (1 − aqi)

−k

(
1 − b

1

qi

)−l

e
1

2qi
s+ηi0 ,

8
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Figure 2. Numerical solutions for the collision of two-loop soliton solution with p1 = 0.5,
p2 = 1.0 at (a) t = 0.0; (b) t = 6.0; (c) t = 8.0; (d) t = 10.0; (e) t = 15.0.

satisfies bilinear equations [23](
2

a
Ds − 1

)
τn(k + 1, l) · τn(k, l) + τn+1(k + 1, l)τn−1(k, l) = 0, (4.2)

and

(2bDs − 1)τn(k, l + 1) · τn+1(k, l) + τn(k, l)τn+1(k, l + 1) = 0. (4.3)

9
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Applying the 2-reduction τn−1 = (∏N
i=1 p2

i

)−1
τn+1, i.e. adding constraints qi = −pi to the

N-soliton solution, we obtain(
2

a
Ds − 1

)
τn(k + 1, l) · τn(k, l) + τn+1(k + 1, l)τn+1(k, l) = 0 (4.4)

and

(2bDs − 1)τn(k, l + 1) · τn+1(k, l) + τn(k, l)τn+1(k, l + 1) = 0, (4.5)

where the gauge transformation τn → ( ∏N
i=1 pi

)n
τn is used. Letting

fk,l = τ0(k, l), f̄ k,l = τ1(k, l),

the bilinear equations (4.4) and (4.5) imply the following four equations:(
2

a
Ds − 1

)
fk+1,l · fk,l + f̄ k+1,l f̄ k,l = 0, (4.6)

(
2

a
Ds − 1

)
f̄ k+1,l · f̄ k,l + fk+1,lfk,l = 0, (4.7)

(2bDs − 1)fk,l+1 · f̄ k,l + fk,l f̄ k,l+1 = 0, (4.8)

(2bDs − 1)f̄ k,l+1 · fk,l + f̄ k,lfk,l+1 = 0, (4.9)

which are actually equivalent to

2

a

(
ln

fk+1,l

fk,l

)
s

− 1 +
f̄ k+1,l f̄ k,l

fk+1,lfk,l

= 0, (4.10)

2

a

(
ln

f̄ k+1,l

f̄ k,l

)
s

− 1 +
fk+1,lfk,l

f̄ k+1,l f̄ k,l

= 0, (4.11)

2b

(
ln

fk,l+1

f̄ k,l

)
s

− 1 +
fk,l f̄ k,l+1

fk,l+1f̄ k,l

= 0, (4.12)

2b

(
ln

f̄ k,l+1

fk,l

)
s

− 1 +
f̄ k,lfk,l+1

f̄ k,l+1fk,l

= 0, (4.13)

where the subscript ‘s’ denotes the derivative with respect to a continuous parameter ‘s’.
Note that f and f̄ can be made complex conjugate of each other by choosing the phase

constants properly. By introducing

uk,l =
(

2i ln
f̄ k,l

fk,l

)
s

, (4.14)

and

Xk,l = ka − (ln f̄ k,lfk,l)s, (4.15)

where Xk,l is the x-coordinate of the kth lattice point at time l, we find the following relations:

uk+1,l − uk,l = ia

(
f̄ k+1,l f̄ k,l

fk+1,lfk,l

− fk+1,lfk,l

f̄ k+1,l f̄ k,l

)
, (4.16)

uk,l+1 + uk,l = i

b

(
fk,l f̄ k,l+1

fk,l+1f̄ k,l

− f̄ k,lfk,l+1

f̄ k,l+1fk,l

)
, (4.17)

10
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Xk+1,l − Xk,l = a

2

(
f̄ k+1,l f̄ k,l

fk+1,lfk,l

+
fk+1,lfk,l

f̄ k+1,l f̄ k,l

)
, (4.18)

Xk,l+1 − Xk,l = −1

b
+

1

2b

(
fk,l f̄ k,l+1

fk,l+1f̄ k,l

+
f̄ k,lfk,l+1

f̄ k,l+1fk,l

)
. (4.19)

It is straightforward to derive

(uk+1,l − uk,l)
2 = 4

(
a2 − δ2

k,l

)
(4.20)

from equations (4.16) and (4.18), and

(uk,l+1 + uk,l)
2 = 4

(
1

b2
−

(
Xk,l+1 − Xk,l +

1

b

)2
)

(4.21)

from equations (4.17) and (4.19), where δk,l = Xk+1,l −Xk,l . Equations (4.20) and (4.21) give
a full-discrete analogue of the SP equation.

Let us consider another full-discrete analogue of the SP equation. Using equations (4.16)–
(4.19), we obtain

f̄ k+1,l f̄ k,l

fk+1,lfk,l

= 1

a

(
Xk+1,l − Xk,l − i

uk+1,l − uk,l

2

)
, (4.22)

fk+1,lfk,l

f̄ k+1,l f̄ k,l

= 1

a

(
Xk+1,l − Xk,l + i

uk+1,l − uk,l

2

)
, (4.23)

fk,l f̄ k,l+1

fk,l+1f̄ k,l

= b

(
Xk,l+1 − Xk,l +

1

b
− i

uk,l+1 + uk,l

2

)
, (4.24)

f̄ k,lfk,l+1

f̄ k,l+1fk,l

= b

(
Xk,l+1 − Xk,l +

1

b
+ i

uk,l+1 + uk,l

2

)
. (4.25)

From relations (4.22)–(4.25), we have

Xk+1,l+1 − Xk,l+1 − i uk+1,l+1−uk,l+1

2

Xk+1,l − Xk,l − i uk+1,l−uk,l

2

= Xk+1,l+1 − Xk+1,l + 1
b

− i uk+1,l+1+uk+1,l

2

Xk,l+1 − Xk,l + 1
b

+ i uk,l+1+uk,l

2

. (4.26)

Equating the real part and imaginary part respectively, we have

(Xk+1,l+1 − Xk,l+1)

(
Xk,l+1 − Xk,l +

1

b

)
+

uk+1,l+1 − uk,l+1

2

uk,l+1 + uk,l

2

=
(

Xk+1,l+1 − Xk+1,l +
1

b

)
(Xk+1,l − Xk,l) − uk+1,l+1 + uk+1,l

2

uk+1,l − uk,l

2
, (4.27)(

Xk,l+1 − Xk,l +
1

b

)
(uk+1,l+1 − uk,l+1) − (Xk+1,l+1 − Xk,l+1)(uk,l+1 + uk,l)

=
(

Xk+1,l+1 − Xk+1,l +
1

b

)
(uk+1,l − uk,l) + (Xk+1,l − Xk,l)(uk+1,l+1 + uk+1,l), (4.28)

which can be rearranged into the following simpler form:

(Xk+1,l+1 − Xk+1,l − Xk,l+1 + Xk,l)

(
1

b
− Xk+1,l + Xk,l+1

)

= −uk+1,l+1 + uk+1,l − uk,l+1 − uk,l

2

uk+1,l + uk,l+1

2
, (4.29)

11
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(uk+1,l+1 − uk+1,l − uk,l+1 + uk,l)

(
2

b
+ Xk+1,l+1 − Xk+1,l + Xk,l+1 − Xk,l

)
= (Xk+1,l+1 + Xk+1,l − Xk,l+1 − Xk,l)(uk+1,l+1 + uk+1,l + uk,l+1 + uk,l). (4.30)

Equations (4.29) and (4.30) constitute another form of integrable full-discretization of the SP
equation. Taking the continuous limit b → 0 in time, we obtain

(Xk+1 − Xk)s = − 1
4 (uk+1 − uk)(uk+1 + uk), (4.31)

and

(uk+1 − uk)s = (Xk+1 − Xk)(uk+1 + uk), (4.32)

which are nothing but the semi-discrete analogue of the SP equation (3.21) and (3.22). Here
we used Fl+1−Fl

2b
→ ∂sF as b → 0.

From the construction of the full-discrete analogue of the SP equation, the determinant
solution of the full-discrete SP equation is

uk,l = i

(
ḡk,l

f̄ k,l

− gk,l

fk,l

)
= d

ds

(
2i ln

f̄ k,l

fk,l

)
, (4.33)

Xk,l = ka − 1

2

(
ḡk,l

f̄ k,l

+
gk,l

fk,l

)
= ka − d

ds
(ln f̄ k,lfk,l), (4.34)

fk,l = τ0(k, l), f̄ k,l = τ1(k, l),

gk,l = ρ0(k, l), ḡk,l = ρ1(k, l),

τn(k, l) =

∣∣∣∣∣∣∣∣∣∣

ψ
(n)
1 (k, l) ψ

(n+1)
1 (k, l) · · · ψ

(n+N−1)
1 (k, l)

ψ
(n)
2 (k, l) ψ

(n+1)
2 (k, l) · · · ψ

(n+N−1)
2 (k, l)

... · · · ...
...

ψ
(n)
N (k, l) ψ

(n+1)
N (k, l) · · · ψ

(n+N−1)
N (k, l)

∣∣∣∣∣∣∣∣∣∣
and

ρn(k, l) =

∣∣∣∣∣∣∣∣∣∣

ψ
(n−1)
1 (k, l) ψ

(n+1)
1 (k, l) · · · ψ

(n+N−1)
1 (k, l)

ψ
(n−1)
2 (k, l) ψ

(n+1)
2 (k, l) · · · ψ

(n+N−1)
2 (k, l)

... · · · ...
...

ψ
(n−1)
N (k, l) ψ

(n+1)
N (k, l) · · · ψ

(n+N−1)
N (k, l)

∣∣∣∣∣∣∣∣∣∣
,

with

ψ
(n)
i (k, l) = pn

i (1 − api)
−k

(
1 − b

1

pi

)−l

e
1

2pi
s+ξi0−iπ/4

+ (−pi)
n(1 + api)

−k

(
1 + b

1

pi

)−l

e− 1
2pi

s+ηi0+iπ/4
,

where the phase constants ±iπ/4 play the role of keeping the reality of the solution and s is an
auxiliary parameter. Note that ρm

n can be expressed as ρm
n = 2∂sτn(k, l) because the auxiliary

parameter s works on elements of the above determinant by 2∂sψ
(n)
i (k, l) = ψ

(n−1)
i (k, l). In

the lattice KdV and lattice Boussinesq equations, one of τ -functions is also expressed by the
derivative of another τ -function with respect to an auxiliary parameter [26, 27]. This is a
common property of discrete soliton equations which are directly connected to the Bäcklund
transformations of continuous soliton equations.

12
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Let us consider equations (4.20) and (4.21) again. Rewriting equations (4.20) and (4.21),
we have (

uk+1,l − uk,l

2

)2

+ δ2
k,l = a2, (4.35)

(uk,l+1 + uk,l

2

)2
+

(
Xk,l+1 − Xk,l +

1

b

)2

= 1

b2
. (4.36)

These equations actually give conserved quantities because a2 and 1/b2 are constants.
Introducing

Ik,l ≡
(

uk+1,l − uk,l

2

)2

+ δ2
k,l, (4.37)

Jk,l ≡
(uk,l+1 + uk,l

2

)2
+

(
Xk,l+1 − Xk,l +

1

b

)2

, (4.38)

equations (4.35) and (4.36) imply the following conserved quantities:

Ik,l = a2, Jk,l = 1

b2
, (4.39)

for arbitrary integer values of k and l. Hence, we have

Ik,l+1 − Ik,l = 0, Jk+1,l − Jk,l = 0. (4.40)

A substitution of the corresponding conserved quantities leads to(
uk+1,l+1 + uk+1,l − uk,l+1 − uk,l

2

) (
uk+1,l+1 − uk+1,l − uk,l+1 + uk,l

2

)
= −(Xk+1,l+1 + Xk+1,l − Xk,l+1 − Xk,l)(Xk+1,l+1 − Xk+1,l − Xk,l+1 + Xk,l), (4.41)

(uk+1,l+1 + uk+1,l + uk,l+1 + uk,l

2

) (
uk+1,l+1 + uk+1,l − uk,l+1 − uk,l

2

)

= −
(

Xk+1,l+1 −Xk+1,l + Xk,l+1 − Xk,l +
2

b

)
(Xk+1,l+1 − Xk+1,l − Xk,l+1 + Xk,l). (4.42)

We can readily show that the difference of equations (4.42) and (4.41) gives equation (4.29),
whereas, the quotient is nothing but equation (4.30). In summary, equations (4.35) and (4.36),
which imply conserved quantities, can also be derived from the full-discrete analogue of the
SP equations (4.29) and (4.30).

5. Conclusions

In this paper, we proposed integrable semi-discrete and full-discrete analogues of the short
pulse equation. The N-soliton solutions of both the continuous and discrete SP equations
were formulated in the form of Casorati determinants, which include multi-loop soliton and
multi-breather solutions. Based on the semi-discrete SP equation, a self-adaptive moving mesh
method is proposed and used for the numerical solutions of the SP equation. The examples of
one- and two-loop soliton solutions show the potential of this novel method for the numerical
study of the short pulse equation.
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